## GPDs and TMDs

### Matthias Burkardt

New Mexico State University

May 16, 2012

- GPDs: Motivation
  - impact parameter dependent PDFs
  - $\hookrightarrow$  Ji relation
- DVCS  $\overset{Q^2 evol.}{\leadsto}$  GPDs
- $\hookrightarrow$  Ji relation (poor man's derivation)
  - $\bullet\,$  comparison Jaffe $\leftrightarrow Ji$  decomposition
- $\hookrightarrow$  torque in DIS
  - Summary





## Impact parameter dependent quark distributions

3







### unpolarized proton

- $q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$
- x = momentum fraction of the quark
- $\vec{b} = \perp$  distance of quark from  $\perp$  center of momentum
- small x: large 'meson cloud'
- larger x: compact 'valence core'
- $x \to 1$ : active quark becomes center of momentum
- $\hookrightarrow \vec{b}_{\perp} \to 0$  (narrow distribution) for  $x \to 1$

## Impact parameter dependent quark distributions



## Impact parameter dependent quark distributions

proton 'polarized in  $+\hat{x}$  direction' & localized in the  $\perp$  direction

$$q(x,\mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} + \frac{1}{2M} \frac{\partial}{\partial b_y} + \frac{1}$$

5

### $spin + relativity = weirdness (\rightarrow Naomi Makins)$

above  $q(x, \mathbf{b}_{\perp})$  calculated in  $\perp$  localized state  $|'\hat{x}'\rangle \equiv |p^+, \mathbf{R}_{\perp} = 0, +\rangle + |p^+, \mathbf{R}_{\perp} = 0, -\rangle$  which is <u>not</u> eigenstate of  $\perp$  nucleon spin

- due to presence of  $\mathbf{p}_{\perp} \neq 0$
- $\pm$  refers to light-front helicity states (issue when  $\mathbf{p}_{\perp} \neq 0$ )

#### distribution in delocalized wave packet

MB, PRD72, 094020 (2005)  $q_{\psi}(x, \mathbf{b}_{\perp}) = \int d^2 r_{\perp} q(x, \mathbf{b}_{\perp} - \mathbf{r}_{\perp}) \left( |\psi(\mathbf{r}_{\perp})|^2 - \frac{1}{2M} \frac{\partial}{\partial r_{\perp}} |\psi(\mathbf{r}_{\perp})|^2 \right)$ two contributions to  $\perp$  shift

- $\bullet$  intrinsic shift relative to center of momentum  $\mathbf{R}_{\perp}$
- $\bullet$  overall shift of  $\mathbf{R}_{\perp}$  for  $\perp$  polarized nucleon

## Angular Momentum carried by Quarks

spherically symmetric wave packet has center of momentum off-center:

• illustrate this relativistic effect using bag model wave functions:

$$\psi = \begin{pmatrix} f(r) \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + M_N} f(r) \end{pmatrix} \chi \quad \text{with} \quad \chi = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

 $\int d^3r f^2(r) = 1$ , take limit of large 'radius' R for wave packet

- evaluate  $T_q^{0z} = \frac{i}{2}\bar{q}\left(\gamma^0\partial^z + \gamma^z\partial^0\right)q$  in this state
- $\psi^{\dagger}\partial_z\psi$  even under  $y \to -y$ , i.e. no contribution to  $\langle yT_q^{0z}\rangle$

• use 
$$i\psi^{\dagger}\gamma^{0}\gamma^{z}\partial^{0}\psi = E\psi^{\dagger}\gamma^{0}\gamma^{z}\psi$$

$$\begin{split} \langle T^{0z}y \rangle &= E \int d^3r \psi^{\dagger} \gamma^0 \gamma^z \psi y = E \int d^3r \psi^{\dagger} \begin{pmatrix} 0 & \sigma^z \\ \sigma^z & 0 \end{pmatrix} \psi y \\ &= \frac{2E}{E+M_N} \int d^3r \chi^{\dagger} \sigma^z \sigma^y \chi f(r)(-i) \partial^y f(r) y \\ &= \frac{E}{E+M_N} \int d^3r f^2(r) \xrightarrow{R \to \infty} \frac{1}{2} \end{split}$$

 $\hookrightarrow p$  pol. in  $+\hat{x}$  direction has CoM shifted by  $\frac{1}{2M_N}$  in  $+\hat{y}$  direction!

## Angular Momentum carried by Quarks

spherically symmetric wave packet has center of momentum off-center:

• illustrate this relativistic effect using bag model wave functions:

$$\psi = \begin{pmatrix} f(r) \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + M_N} f(r) \end{pmatrix} \chi \quad \text{with} \quad \chi = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\langle T^{0z}y\rangle \stackrel{R\to\infty}{\longrightarrow} \frac{1}{2}$$

 $\hookrightarrow p$  pol. in  $+\hat{x}$  direction has CoM shifted by  $\frac{1}{2M_N}$  in  $+\hat{y}$  direction!

#### origin of 'shift' of CoM

- $\bullet$  nucleon polarization:  $\bigodot$
- counterclockwise momentum density from lower component

• 
$$p \sim \frac{1}{R}$$
, but  $y \sim R$ 

$$\rightarrow \langle T^{++}y \rangle = \mathcal{O}(1)$$



## Angular Momentum Carried by Quarks

### Total (Spin+Orbital) Quark Angular Momentum

$$J_{q}^{x} = L_{q}^{x} + S_{q}^{x} = \int d^{3}r \left[ yT_{q}^{0z}(\vec{r}) - zT_{q}^{0y}(\vec{r}) \right]$$

•  $T_q^{\mu\nu}(\vec{r})$  energy momentum tensor  $(T_q^{\mu\nu}(\vec{r}) = T_q^{\nu\mu}(\vec{r}))$ 

•  $T_q^{0i}(\vec{r})$  momentum density  $[P_q^i = \int d^3r T_q^{0i}(\vec{r})$ ]

• think: 
$$(\vec{r} \times \vec{p})^x = yp^z - zp^z$$

- 1

### relate to impact parameter dependent quark distributions $q_{\psi}(x, \mathbf{r}_{\perp})$ :

Consider spherically symmetric wave packet with nucleon polarized in  $+\hat{x}$  direction

• eigenstate under rotations about x-axis

$$\begin{array}{l} \hookrightarrow \text{ both terms in } J_q^x \text{ equal:} \\ J_q^x = 2 \int d^3 r \, y T_q^{0z}(\vec{r}) = \int d^3 r \, y \left[ T_q^{0z}(\vec{r}) + T_q^{z0}(\vec{r}) \right] \\ \bullet \int d^3 r \, y T_q^{00}(\vec{r}) = 0 = \int d^3 r \, y T_q^{zz}(\vec{r}) \\ \Rightarrow \quad J_q^x = \int d^3 r \, y T_q^{++}(\vec{r}) \quad \text{with} \quad T^{++} \equiv T^{00} + T^{0z} + T^{z0} + T^{zz} \end{aligned}$$

### relate to impact parameter dependent quark distributions $q_{\psi}(x, \mathbf{r}_{\perp})$ :

Consider spherically symmetric wave packet with nucleon polarized in  $+\hat{x}$  direction

• eigenstate under rotations about x-axis

$$\Rightarrow \text{ both terms in } J_q^x \text{ equal:} \\ J_q^x = 2 \int d^3 r \, y T_q^{0z}(\vec{r}) = \int d^3 r \, y \left[ T_q^{0z}(\vec{r}) + T_q^{z0}(\vec{r}) \right] \\ \bullet \int d^3 r \, y T_q^{00}(\vec{r}) = 0 = \int d^3 r \, y T_q^{zz}(\vec{r}) \\ \Rightarrow \quad J_q^x = \int d^3 r \, y T_q^{++}(\vec{r}) \quad \text{with} \quad T^{++} \equiv T^{00} + T^{0z} + T^{z0} + T^{zz} \\ \int d^3 r \, y T_q^{-1}(\vec{r}) = 0 = \int d^3 r \, y T_q^{++}(\vec{r}) \quad \text{with} \quad T^{++} \equiv T^{00} + T^{0z} + T^{z0} + T^{zz} + T^{zz}$$

• 
$$\int dx \, xq(x, \mathbf{r}_{\perp}) = \frac{1}{2m_N} \int dr^z T^{++}(\vec{r})$$
  
(note: here  $x$  is momentum fraction and not  $r^x$ )  
 $\rightarrow \langle \psi | J_q^x | \psi \rangle = m_N \int dx \int d^2 b_{\perp} x b^y q_{\psi}(x, \mathbf{b}_{\perp})$ 

## Angular Momentum Carried by Quarks

distribution in delocalized wave packet (pol. in  $+\hat{x}$  direction)

$$q_{\psi}(x, \mathbf{b}_{\perp}) = \int d^2 r_{\perp} q(x, b_{\perp} - r_{\perp}) \left( |\psi(\mathbf{r}_{\perp})|^2 - \frac{1}{2M} \frac{\partial}{\partial r_y} |\psi(\mathbf{r}_{\perp})|^2 \right)$$
 with

$$q(x,\mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}}$$

two contributions to  $\perp$  shift

- $\bullet$  intrinsic shift relative to center of momentum  $\mathbf{R}_{\perp}$
- overall shift of  $\mathbf{R}_{\perp}$  for  $\perp$  polarized nucleon

insert into  $\langle \psi | J_q^x | \psi \rangle = \int dx \int d^2 b_\perp q_\psi(x, \mathbf{b}_\perp)$  MB, PRD72, 094020 (2005)

 $\langle \psi | J_q^x | \psi \rangle = \frac{1}{2} \int dx \, x \left[ H_q(x,0,0) + E_q(x,0,0) \right] \qquad \text{(here: derived for } \vec{p} = \vec{0} \text{ only!})$ 

- X.Ji (1996): rotational invariance  $\Rightarrow$  apply to all components of  $\vec{J}$
- result for  $J_q^z$  also applies to  $p_z \neq 0$
- partonic interpretation ( $\perp$  shift) exists only for  $\perp$  components of  $\vec{J}_q$ !

### insert into $\langle \psi | J_q^x | \psi \rangle = \int dx \int d^2 b_\perp q_\psi(x, \mathbf{b}_\perp)$ MB, PRD72, 094020 (2005)

 $\langle \psi | J_q^x | \psi \rangle = \frac{1}{2} \int dx \, x \left[ H_q(x,0,0) + E_q(x,0,0) \right] \qquad \text{(here: derived for } \vec{p} = \vec{0} \text{ only!})$ 

- X.Ji (1996): rotational invariance  $\Rightarrow$  apply to all components of  $\vec{J}$
- result for  $J_q^z$  also applies to  $p_z \neq 0$
- partonic interpretation ( $\perp$  shift) exists only for  $\perp$  components of  $\vec{J}_q$ !

#### gauge invariance

- matrix element of  $T_q^{++} = \bar{q}\gamma^+i\partial^+q$  in  $A^+ = 0$  gauge same as that of  $\bar{q}\gamma^+(i\partial^+ gA^+)q$  in any gauge
- $\stackrel{\hookrightarrow}{\to} \text{ identify } \frac{1}{2} \int dx \, x \left[ H(x,0,0) + E(x,0,0) \right] \text{ with } J_q \text{ in decomposition where } \\ \vec{L}_q = \int d^3x \langle P,S | q^{\dagger}(\vec{x}) \left( \vec{x} \times i \vec{D} \right) q(\vec{x}) | P,S \rangle$

## insert into $\langle \psi | J_q^x | \psi \rangle = \int dx \int d^2 b_\perp q_\psi(x, \mathbf{b}_\perp)$ MB, PRD72, 094020 (2005)

$$\langle \psi | J_q^x | \psi \rangle = \frac{1}{2} \int dx \, x \left[ H_q(x,0,0) + E_q(x,0,0) \right] \qquad \text{(here: derived for } \vec{p} = \vec{0} \text{ only!})$$

- X.Ji (1996): rotational invariance  $\Rightarrow$  apply to all components of  $\vec{J}$
- result for  $J_q^z$  also applies to  $p_z \neq 0$
- partonic interpretation ( $\perp$  shift) exists only for  $\perp$  components of  $\vec{J}_q$ !

#### caution!

- made heavily use of rotational invariance
- $\hookrightarrow$  itentification  $\langle \psi | J_q^x | \psi \rangle = \frac{1}{2} \int dx \, x \left[ H(x,0,0) + E(x,0,0) \right]$  does not apply to unintegrated quantities

• 
$$\int d^2 \Delta_{\perp} e^{-i\mathbf{b}_{\perp}\cdot\boldsymbol{\Delta}_{\perp}} \frac{x}{2} \left[ H(x,0,-\Delta_{\perp}^2) + E(x,0,-\Delta_{\perp}^2) \right]$$
 not equal to  $J^z(\mathbf{b})_{\perp}$ 

•  $J_q(x) \equiv \frac{x}{2} \left[ H_q(x,0,0) + E_q(x,0,-\Delta_{\perp}^2) \right]$  not x-distribution of angular momentum  $J_q^z(x)$  in long. pol. target

regardless whether one takes gauge covariant definition or not

## Angular Momentum Carried by Quarks

 $L^u + L^d \approx 0$ 



signs of  $L^q$  counter-intuitive

# $\mathcal{A}_{DVCS} \stackrel{!}{\leadsto} GPDs$



$$\Re \mathcal{A}(\xi, t, Q^2) = \int_{-1}^1 dx \frac{H(x, \xi, t, Q^2)}{x - \xi} = \int_{-1}^1 dx \frac{H(x, x, t, Q^2)}{x - \xi} + \Delta(t, Q^2)$$

# $\mathcal{A}_{DVCS} \stackrel{:}{\leadsto} GPDs$



Polynomiality/Dispersion Relations (GPV/AT DI)

$$\Re \mathcal{A}(\xi, t, Q^2) = \int_{-1}^{1} dx \frac{H(x, \xi, t, Q^2)}{x - \xi} = \int_{-1}^{1} dx \frac{H(x, x, t, Q^2)}{x - \xi} + \Delta(t, Q^2)$$

- Can 'condense' all information contained in contained in  $\mathcal{A}_{DVCS}$ (fixed  $Q^2$ ) into  $GPD(x, x, t, Q^2) \& \Delta(t, Q^2)$
- if two models both satisfy polynomiality and are equal for  $x = \xi$ (but not for  $x \neq \xi$ ) and have same  $\Delta(t, Q^2)$  then DVCS at fixed  $Q^2$  cannot distinguish between the two models

# $\mathcal{A}_{DVCS} \stackrel{:}{\leadsto} GPDs$

Polynomiality/Dispersion Relations (GPV/AT DI)

$$\Re \mathcal{A}(\xi, t, Q^2) = \int_{-1}^1 dx \frac{H(x, \xi, t, Q^2)}{x - \xi} = \int_{-1}^1 dx \frac{H(x, x, t, Q^2)}{x - \xi} + \Delta(t, Q^2)$$

- Can 'condense' all information contained in contained in  $\mathcal{A}_{DVCS}$ (fixed  $Q^2$ ) into  $GPD(x, x, t, Q^2)$  &  $\Delta(t, Q^2)$
- if two models both satisfy polynomiality and are equal for  $x = \xi$ (but not for  $x \neq \xi$ ) and have same  $\Delta(t, Q^2)$  then DVCS at fixed  $Q^2$  cannot distinguish between the two models

#### need Evolution!

$$\mu^2 \frac{d}{d\mu^2} H^{q(-)}(x,\xi,t) = \int_{-1}^1 dx' \frac{1}{|\xi|} V_{\rm NS}\Big(\frac{x}{\xi},\frac{x'}{\xi}\Big) H^{q(-)}(x',\xi,t)$$

•  $Q^2$  evolution changes x distribution in a known way for fixed  $\xi$  $\hookrightarrow$  measure  $Q^2$  dependence to disentangle x vs.  $\xi$  dependence DVCS  $\rightsquigarrow GPD(x,\xi,t)$  (a mathematical exercise) 13

$$GPD(x,\xi,t,Q^2) = (1-x^2) \sum_{n=0}^{\infty} C_n^{3/2}(x) \sum_{m=0(even)}^{n} a_{nm}(\xi) \mathcal{C}_{n-m}(\xi,t,Q^2)$$

- $C_n^{3/2}(x)$  Gegenbauer polynomials;  $a_{nm}(\xi)$  known polynomial
- $\mathcal{C}_k(\xi, t, Q^2)$  unknown, but evolve with known power of  $\alpha_s(Q^2)$
- consider  $x = \xi$  (relabel: k = n m)

$$GPD(\xi,\xi,t,Q^2) = (1-\xi^2) \sum_{k=0}^{\infty} \mathcal{C}_k(\xi,t,Q^2) f_k(\xi)$$
(2)

with  $f_k(\xi) = \sum_{m=0(even)}^{\infty} a_{m+k,m}(\xi) C_{m+k}^{3/2}(\xi)$  known function.

- for fixed  $\xi$ , each term in (1) evolves with different  $\gamma_k$
- $\hookrightarrow \text{ from } Q^2 \text{-dependence of } GPD(\xi, \xi, t, Q^2) \text{ (fixed } \xi \text{ and } t) \text{ over } \\ \text{`wide' range of } Q^2 \text{, in principle possible to determine } \mathcal{C}_k(\xi, t, Q^2) \\ \hookrightarrow GPD(x, \xi, t, Q^2) \text{ for } x \neq \xi \text{ model-independently!}$

need EIC as QCD evolution is slow...( $\rightarrow$  Aschenauer et al.)





### scalar diquark model

- LC wave functions  $\psi^S_s(x,{\bf k}_\perp)$
- $\hookrightarrow \mathcal{L}_q \text{ from } |\psi_s^S(x,\mathbf{k}_{\perp})|^2$ 
  - GPDs from overlap integrals of  $\psi^{\dagger}\psi$
- $\hookrightarrow L_q$  from Ji
  - $L_q = \mathcal{L}_q$ . No surprise since  $L_q - \mathcal{L}_q \sim \langle q^{\dagger} \vec{r} \times \vec{A} q \rangle$  and no  $\vec{A}$  in scalar diquark model
  - $L_q(x) \neq \mathcal{L}_q(x)$



### scalar diquark model

- interpretation of  $J_q(x) \equiv \frac{x}{2} [q(x) + E^q(x, 0, 0)]$ <u>not</u> that of distribution of AM in x
- FT of  $J(t) \equiv \frac{x}{2} [q(x) + E^q(x, 0, 0)]$ <u>not</u> distribution of  $J_q^z$  in  $\mathbf{b}_{\perp}$

M.B. + Hikmat BC, PRD **79**, 071501 (2009)

### QED for dressed $e^-$ in QED

- LC wave functions  $\psi^S_{sh}(x,{\bf k}_\perp)$
- $\hookrightarrow \mathcal{L}_q \text{ from } |\psi^S_{sh}(x, \mathbf{k}_\perp)|^2$ 
  - GPDs from overlap integrals of  $\psi^{\dagger}\psi$

$$\hookrightarrow L_q$$
 from Ji

• 
$$\mathcal{L}_e = L_e + \frac{\alpha}{4\pi} \neq L_e$$

$$\begin{aligned} & \text{Jaffe decomposition} \end{aligned} \qquad \begin{array}{l} \text{Jaffe decomposition} \\ & \frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + L_{q} + J_{g} \\ & \text{light-cone framework & gauge } A^{+} = 0 \\ & \text{light-cone framework & gauge } A^{+} = 0 \\ & \frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g} \\ & \frac{1}{2} = \int d^{3}x \langle P, S | q^{\dagger}(\vec{x}) \begin{pmatrix} \vec{x} \times i\vec{D} \end{pmatrix}_{q}^{3}(\vec{x}) | P, S \rangle \\ & J_{g} = \int d^{3}x \langle P, S | \left[ \vec{x} \times \begin{pmatrix} \vec{E} \times \vec{B} \end{pmatrix} \right]^{3} | P, S \rangle \\ & \bullet i\vec{D} = i\vec{\partial} - g\vec{A} \end{aligned} \qquad \begin{array}{l} \text{Jaffe decomposition} \\ & \text{light-cone framework & gauge } A^{+} = 0 \\ & \frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g} \\ & \mathcal{L}_{q} = \int d^{3}r \langle P, S | \bar{q}(\vec{r}) \gamma^{+} \begin{pmatrix} \vec{r} \times i\vec{\partial} \end{pmatrix}_{q}^{z}(\vec{r}) | P, S \rangle \\ & \Delta G = \varepsilon^{+-ij} \int d^{3}r \langle P, S | \operatorname{Tr} F^{+i}A^{j} | P, S \rangle \\ & \mathcal{L}_{g} = 2 \int d^{3}r \langle P, S | \operatorname{Tr} F^{+j} \begin{pmatrix} \vec{x} \times i\vec{\partial} \end{pmatrix}_{A}^{z}^{j} | P, S \rangle \end{aligned}$$

• GPDs  $\longrightarrow L^q$ 

• 
$$\overrightarrow{p} \overleftarrow{p} \longrightarrow \Delta G \longrightarrow \mathcal{L} \equiv \sum_{i \in q, g} \mathcal{L}^i$$

- $\bullet \ L^q \neq \mathcal{L}^q$
- $\mathcal{L}^q L^q = ?$ 
  - can we calculate/predict the difference?
  - what does it represent?

## OAM from Wigner Functions

Wigner Functions (Belitsky, Ji, Yuan; Netz et al.)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2\vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} \langle P'S'|\bar{q}(0)\gamma^+q(\xi)|PS\rangle.$$

 $\bullet~({\rm quasi})$  probabilty distribution for  ${\bf b}_\perp$  and  ${\bf k}_\perp$ 

• 
$$f(x, \mathbf{k}_{\perp}) = \int d^2 \mathbf{b}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

• 
$$q(x, \mathbf{b}_{\perp}) = \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

### OAM from Wigner (Lorcé et al.)

$$L_{z} = \int dx \int d^{2} \mathbf{b}_{\perp} \int d^{2} \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_{x}k_{y} - b_{y}k_{x})$$
$$= \int d^{3}r \langle P, S | \bar{q}(\vec{r})\gamma^{+} \left(\vec{r} \times i\vec{\partial}\right)^{z} q(\vec{r}) | P, S \rangle = \mathcal{L}^{q}$$

### Gauge Invariance?

need to include Wilson-line gauge link to connect 0 and  $\xi$ 

• same as Jaffe-Manohar definition

## OAM from Wigner Functions

Wigner Functions with gauge link  $\mathcal{U}_{0\varepsilon}$  (Ji, Yuan; Hatta)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2\vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} \langle P'S'|\bar{q}(0)\gamma^+ \mathcal{U}_{0\xi}q(\xi)|PS\rangle.$$

W and thus  $L_z = \int dx \int d^2 \mathbf{b}_{\perp} \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_x k_y - b_y k_x)$  may depend on choice of path!

### straight line (Ji et al.)

straigth Wilson line from 0 to  $\xi$ vields  $L_a =$  $\int d^3x \langle P,S|q^{\dagger}(\vec{x}) \left( \vec{x} imes i \vec{D} 
ight)^3_q (\vec{x}) |P,S\rangle$ 

- $i\vec{D} = i\vec{\partial} q\vec{A}$
- same as Ji-OAM
- $f(x, \mathbf{k}_{\perp}) = \int d^2 \mathbf{b}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$ not the TMDs relevant for SIDIS (missing FSI!)

## OAM from Wigner Functions

Wigner Functions with gauge link  $\mathcal{U}_{0\xi}$  (Ji, Yuan; Hatta)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \! \frac{d^2 \vec{q}_{\perp}}{(2\pi)^2} \! \int \! \frac{d^2 \xi_{\perp} d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} \langle P'S' | \vec{q}(0) \gamma^+ \mathcal{U}_{0\xi} q(\xi) | PS \rangle. \label{eq:W}$$

W and thus  $L_z = \int dx \int d^2 \mathbf{b}_{\perp} \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_x k_y - b_y k_x)$  may depend on choice of path!

### Light-Cone Staple for $\mathcal{U}_{0\xi}^{\pm LC}$ (Hatta)

- want Wigner function that yields TMDs relevant for SIDIS when integrated  $d^2\mathbf{b}_{\perp}$
- $\begin{array}{l} \hookrightarrow \text{ path for gauge link} \longrightarrow \\ \text{'light-cone staple'} \longrightarrow \mathcal{U}_{0\xi}^{+LC} \end{array}$

$$\xi_{\perp} \underbrace{\begin{smallmatrix} q(\xi^{-},\xi_{\perp}) & (\infty^{-},\xi_{\perp}) \\ \xi^{-} & q(0^{-},0_{\perp}) & (\infty^{-},0_{\perp}) \end{smallmatrix}}_{q(0^{-},0_{\perp}) \text{ int at } x^{-} = \infty}$$

$$\mathcal{L}^{q}_{+} = \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left( \vec{x} \times i \vec{\mathcal{D}} \right)^{3}_{q}(\vec{x}) | P, S \rangle$$

• 
$$i\vec{\mathcal{D}} = i\vec{\partial} - g\vec{A}(x^- = \infty, \mathbf{x}_\perp)$$

• staple at 
$$x^- = -\infty$$
  $\mathcal{L}^q_-$ 

• 
$$\mathrm{PT} \Rightarrow \mathcal{L}_{-}^{q} = \mathcal{L}_{+}^{q}$$

• 
$$A_{\perp}(\infty, \mathbf{x}_{\perp}) = A_{\perp}(-\infty, \mathbf{x}_{\perp}) \Rightarrow \mathcal{L}^q_+ = \mathcal{L}^q_{JM}$$

 $\hookrightarrow$  link at  $x^- = \pm \infty$  no role for OAM!

straight line (
$$\rightarrow$$
Ji)light-cone staple ( $\rightarrow$  Jaffe-Manohar) $L_q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$  $\mathcal{L}^q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ •  $i\vec{D} = i\vec{\partial} - g\vec{A}$ •  $i\vec{D} = i\vec{\partial} - g\vec{A}(x^- = \infty, \mathbf{x}_\perp)$ 

### difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} [\vec{x} \times (\mathbf{A}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}(\vec{x}))]^{z} q(\vec{x}) | P, S \rangle$$
  
$$\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}) = \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp})$$

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x$$

straight line (
$$\rightarrow$$
Ji)light-cone staple ( $\rightarrow$  Jaffe-Manohar) $L_q = \int d^3 x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i \vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$  $\mathcal{L}^q = \int d^3 x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i \vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$ •  $i \vec{D} = i \vec{\partial} - g \vec{A}$ •  $i \vec{D} = i \vec{\partial} - g \vec{A} (x^- = \infty, \mathbf{x}_\perp)$ 

### difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} [\vec{x} \times (\mathbf{A}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}(\vec{x}))]^{z} q(\vec{x}) | P, S \rangle$$
  
$$\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}) = \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp})$$

color Lorentz Force acting on ejected quark (MB: arXiv:08103589)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for  $\vec{v} = (0, 0, -1)$ 

straight line (
$$\rightarrow$$
Ji)light-cone staple ( $\rightarrow$  Jaffe-Manohar) $L_q = \int d^3 x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i \vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$  $\mathcal{L}^q = \int d^3 x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i \vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$ •  $i \vec{D} = i \vec{\partial} - g \vec{A}$ •  $i \vec{D} = i \vec{\partial} - g \vec{A} (x^- = \infty, \mathbf{x}_\perp)$ 

### difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} [\vec{x} \times (\mathbf{A}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}(\vec{x}))]^{z} q(\vec{x}) | P, S \rangle$$
  
$$\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}) = \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp})$$

color Lorentz Force acting on ejected quark (MB: arXiv:08103589)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for  $\vec{v} = (0, 0, -1)$ 

Torque along the trajectory of q

$$T^z = \left[ \vec{x} \times \left( \vec{E} - \hat{\vec{z}} \times \vec{B} \right) \right]^z$$

### Change in OAM

$$\Delta L^{z} = \int_{x^{-}}^{\infty} dr^{-} \left[ \vec{x} \times \left( \vec{E} - \hat{\vec{z}} \times \vec{B} \right) \right]^{z}$$

difference  $\mathcal{L}^q - L^q$ 

straight line (
$$\rightarrow$$
Ji)light-cone staple ( $\rightarrow$  Jaffe-Manohar) $L_q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D})^z (\vec{x}) | P, S \rangle$  $\mathcal{L}^q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D})^z (\vec{x}) | P, S \rangle$ •  $i\vec{D} = i\vec{\partial} - g\vec{A}(\vec{x})$ •  $i\vec{D} = i\vec{\partial} - g\vec{A}(x^- = \infty, \mathbf{x}_{\perp})$ 

20



## Summary

•  $E^q(x, 0, -\Delta_{\perp}^2) \longrightarrow \perp$  deformation of PDFs for  $\perp$  polarized target

 $\hookrightarrow\,$  parton interpretation for Ji-relation

- (in principle)  $GPD(x,\xi)$  from QCD evolution of  $GPD(\xi,\xi,Q^2)$
- interpretation of  $L_q \mathcal{L}_q$  as change in OAM of ejected quark

•  $L_q$  matrix element of

$$q^{\dagger} \left[ \vec{r} \times \left( i \vec{\partial} - g \vec{A} \right) \right]^z q = \bar{q} \gamma^0 \left[ \vec{r} \times \left( i \vec{\partial} - g \vec{A} \right) \right]^z q$$

•  $\mathcal{L}_q^z$  matrix element of  $(\gamma^+ = \gamma^0 + \gamma^z)$ 

$$\bar{q}\gamma^{+}\left[\vec{r}\times i\vec{\partial}\right]^{z}q\Big|_{A^{+}=0}$$

- (for  $\vec{p} = 0$ ) matrix element of  $\bar{q}\gamma^{z} \left[\vec{r} \times \left(i\vec{\partial} g\vec{A}\right)\right]^{z} q$  vanishes (parity!)
- $\hookrightarrow L_q$  identical to matrix element of  $\bar{q}\gamma^+ \left[\vec{r} \times \left(i\vec{\partial} g\vec{A}\right)\right]^z q$  (nucleon at rest)
- $\stackrel{\hookrightarrow}{\to} \text{ even in light-cone gauge, } L^z_q \text{ and } \mathcal{L}^z_q \text{ still differ by matrix element} \\ \text{ of } q^\dagger \left( \vec{r} \times g \vec{A} \right)^z q \Big|_{A^+=0} = q^\dagger \left( r^x g A^y r^y g A^x \right) q \Big|_{A^+=0}$ 
  - how significant is that difference?

## What is Orbital Angular Momentum

#### first: QED without electrons

• apply 
$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{b}(\vec{a} \cdot \vec{c})$$
 to  $\vec{E} \times (\vec{\nabla} \times \vec{A})$ 

$$\vec{J} = \int d^3 r \, \vec{x} \times \left( \vec{E} \times \vec{B} \right) = \int d^3 r \, \vec{x} \times \left[ \vec{E} \times \left( \vec{\nabla} \times \vec{A} \right) \right]$$
$$= \int d^3 r \left[ E^j \left( \vec{x} \times \vec{\nabla} \right) A^j - \vec{x} \times (\vec{E} \cdot \vec{\nabla}) \vec{A} \right]$$

• integrate by parts (drop surface term)

$$ec{J} = \int d^3r \, \left[ E^j \left( ec{x} imes ec{
u} 
ight) A^j + \left( ec{x} imes ec{A} 
ight) ec{
u} \cdot ec{E} + ec{E} imes ec{A} 
ight]$$

• drop  $2^{nd}$  term (eq. of motion  $\vec{\nabla} \cdot \vec{E} = 0$ ), yielding  $\vec{J} = \vec{L} + \vec{S}$  with

$$ec{L} = \int d^3 r \, E^j \left( ec{x} imes ec{
abla} 
ight) A^j \qquad ec{S} = \int d^3 r \, ec{E} imes ec{A}$$

• note:  $\vec{L}$  and  $\vec{S}$  not separately gauge invariant as written, but can be made so ( $\rightarrow$  nonlocal)

# Example: Photon Angular Momentum in QED 24

### QED with electrons

$$\begin{split} \vec{J}_{\gamma} &= \int d^3 r \, \vec{r} \times \left( \vec{E} \times \vec{B} \right) = \int d^3 r \, \vec{r} \times \left[ \vec{E} \times \left( \vec{\nabla} \times \vec{A} \right) \right] \\ &= \int d^3 r \, \left[ E^j \left( \vec{r} \times \vec{\nabla} \right) A^j - \vec{r} \times (\vec{E} \cdot \vec{\nabla}) \vec{A} \right] \\ &= \int d^3 r \, \left[ E^j \left( \vec{r} \times \vec{\nabla} \right) A^j + \left( \vec{r} \times \vec{A} \right) \vec{\nabla} \cdot \vec{E} + \vec{E} \times \vec{A} \right] \end{split}$$

• replace  $2^{nd}$  term (eq. of motion  $\vec{\nabla} \cdot \vec{E} = ej^0 = e\psi^{\dagger}\psi$ ), yielding

$$\vec{J}_{\gamma} = \int d^3r \left[ \psi^{\dagger} \vec{r} \times e \vec{A} \psi + E^j \left( \vec{x} \times \vec{\nabla} \right) A^j + \vec{E} \times \vec{A} \right]$$

•  $\psi^{\dagger}\vec{r} \times e\vec{A}\psi$  cancels similar term in electron OAM  $\psi^{\dagger}\vec{r} \times (\vec{p} - e\vec{A})\psi$ 

- $\hookrightarrow$  decomposing  $\vec{J}_{\gamma}$  into spin and orbital also shuffles angular momentum from photons to electrons!
  - can also be done for only part of  $\vec{A} \to \text{Chen}/\text{Goldman}$ , Wakamatsu